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ABSTRACT 

Let S be a nonlacunary subsemigroup of the natural numbers and let # 

be an S-invariant and ergodic measure. Using entropy arguments on a 

symbolic representation of the inverse limit of this action, we show that if 

any element in S has positive entropy with respect to/J, then/~ is Lebesgue. 

1. I n t r o d u c t i o n  

In this paper we want to explore multiplication on the interval mod 1. Let ,9 be 

a semigroup generated by such maps. Consider the set A4 of Borel probability 

measures, invariant and ergodic for 8. If S is generated by just one map then 

A4 is very large. If S is generated by two numbers that are powers of the same 

number, then A4 is still large. This is because we obtain all the measures from 

the singly generated semigroup. But in other situations, A4 is quite different. 

We can characterize a semigroup E of N to be nonlacunary if it is not contained 

in a singly generated semigroup. For example, the semigroups generated by 2 

and 3, or 6 and 10, are both nonlaeunary. In IF] Furstenberg showed that any 

dosed subset of [0, 1) invariant under a nonlacunary semigroup of integers must 

be finite or all of [0, 1). He conjectured that a stronger result held, that any 

invariant ergodic Borel probability measure for such a semigroup must be either 

atomic or Lebesgue. 

Under a stronger hypothesis, Lyons [L] obtained the following result. If ~ is 

generated by two relatively prime integers and if either one of these two dements 
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is exact as a measure-preserving endomorphism then # is Lebesgue measure. This 

raised the issue of using entropy, which Rudolph [R] incorporated, to show that 

if p is ergodic for a relatively prime pair of integers and if either map has positive 

entropy with respect to p then p is Lebesgue measure. The purpose of this paper 

is to extend Rudolph's result to the following: 

THEOREM A: Let p and q generate a nonlacunary subsemigroup of the integers. 

Let T = ×p (rood 1), S = xq (rood 1) on the circle. I f  ~ is a Bore1 probability 

measure invariant and ergodic for T and S then either p is Lebesgue measure or 

h~(T) = 0 = h~(S). 

Theorem A tells us that in the case of 2 maps, ~ is a small set, containing 

only Lebesgue measure and measures of entropy zero. The main body of this 

paper will prove Theorem A. We will first use Theorem A to prove the general 

result: 

THEOREM B: Let ~ be any multiplicative nonlacunary subsemigroup of N and 

let p be an invariant Borel probability measure that is ergodic for ]C. Then 

either p is Lebesgue measure or hl,(t ) = 0/ 'or  every t E ~, where t represents 

multipllcation by t rood 1 on the circle. 

Proof: Let us assume there exists some t with h~,(t) > 0. Consider this dement  

t E ~. We want to show that there is a doubly generated nonlaetmary subsemi- 

group of I2 that contains t. Since ~ C_ N there is a smallest number a E N such 
n that  t is a power of a. By definition of nonlaeunary we can find s ~ {a },=1, 

such that the semigroup S generated by s and t is a nonlacunary subsemigroup 

of ~ as wanted. 

By [Ro] there is a decomposition of the measure p denoted by p = f pzdz 

where #z is ergodic for S. It is well known that h~,(b) = fht , , (b)dz  for b E S. 

Since we are assuming h~(t) > 0, the set {z : h~,(t) > 0} must have positive 

measure. By Theorem A s u c h / ~  are Lebesgue. Then we can decompose p as 

# = aL + (1 - a )p  where L is Lebesgue measure and a > 0. But both L and # 

are invariant and ergodic for ~ and thus we must have a = 1. Thus if ha(t ) > 0 

for any t we have p = L. This in turn shows h~(t) > 0 for every t E ~ so in 

particular we have shown that ht,(t ) = 0 for one t implies h~(t) = 0 for every t. 

This completes the proof of Theorem B. | 

Notice that  Theorem B reduces the Furstenberg conjecture to the entropy zero 
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case .  

2. T h e  S y m b o l i c  Representation, Measures, and E n t r o p y  

In this chapter we review material from [R]. Since the proofs appear in that 

paper, we will just state the results here. Let To be multiplication by p mod 1 

and So be multiplication by q rood 1. We will describe the action of To and So 

on the circle symbolically. 

Parti t ion the circle, [0,1), into pq intervals 

Notice that 

i j =  [Jq , j  + l lPq- '  " 
Pq Jj=0 

px[ J+l] r p J+l)] . p q  Lp, pq 
Let i = pj mod pq. Then we can write this image as 

[ i i + _ _ p l p ' - l  = i i  U ..  . U i i + , _ l "  
Pq ' Pq J j=0 

Similarly, So(Ij) = h U-- .  U Ik+q-1 where k = qj mod pq. Thus lr.'~Pq-1 forms t * l  Jj=O 

a Markov partition for both To and So. Let 

V = x E [0,1) : x = pnqm;n,m, t  E N . 

V contains the points for which there exists n and m such that T g - I s ~ ' - l x  lie 

on a boundary of our partition. 

Define FT(i) = {j : Ij C T0(Ii)} and similarly let Fs(i) = {j : Ij  C So(//)}. 

These are the 'followers' of a symbol i for the maps T0 and So, respectively. 

Now we can associate to each To and So a pq x pq transition matrix of O's and 

l's: MT = [aij] where aij = 1 i f f j  E FT(i) ,Ms = [bi/] where bij = 1 i f f j  E F,(i). 
Let ~ = {0, 1 , . . .  ,pq - 1} be the state space associated with these matrices. 

If [io, i l ," .  ,in-l] is a finite word of elements of ~ with all ai~i~+z = 1 then 

] N]=~ T~-~(I~j ) is an interval t/p"q, (~ + 1)/p"q . Thus to any one-sided infinite 

MT-allowed word ~' = [i0, il , . . .] there corresponds a point x~, = Nj~__0 ToJ(Iii ) E 
[0, 1). 
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Similarly for any M,-allowed word 

I 
im-1 

,'2 

io 

m--1 
Nj=0 SoJ(Iij ) is an interval [t/pq m, (t + 1)/pq 'n] and to each one-sided infinite 

o o  
Ms-allowed word there corresponds a point z = ~j=0 SoJ(Ii¢ )" 

Let N = {0 ,1 ,2 , . . .}  and let Y C__ ~ N2 consist of all arrays which are MT- 

allowed on rows and M,-allowed on columns. We can think of a point y E Y as 

a 'first quadrant '  of symbols, where there is a symbol at each nonnegative lattice 

point. Let T be the left shift and S the down shift. That  is, Ty( i , j )  = y(i + 1 , j )  

and Sy( i , j )  = y( i , j  + 1). 

To any point x E [0, 1) \ V there corresponds a unique point yz E Y. Just set 

yx(n ,m)  = j if T ~ S ~ x  E I 1. Recall that for x E V there exists k , r , s  such that 

x = k/prq s. Thus for all n > r - 1 and m >_ s - 1 , T ~ S ~ x  is on the boundary of 

two Ij 's.  The symbol at (n, m) could indicate the left or right interval. However, 

if we specify the left (right) interval at (r - 1, s - 1) then in order to obey the 

transition rules we must take the left (right) interval at all (n, m) with n >_ r - 1 

and m > s - 1. So there are two points in Y that represent each x E V. 

Remark 2.1: For any symbols a0, al ,  a2 , . . .  E E there exists y E Y with y(i, i) = 

hi. All such y will agree on y( i , j ) , i  # j .  I 

Remark 2.2: Consider the map ~(y) = f~i°°__0 ToiSoi[I~(i,i)]. This is a map from 

(Y, S, T) to ([0, 1), So, To) which is 1 to 1 everywhere except on the countable set 

V where it is 2 to 1. I 

Put  the product  topology on Y; ~ is continuous. Let V* C Y be those count- 

ably many points with ~(y) E V. Note that V* is invariant for both T and 

S. 

Remark 2.3: Any MT-allowed horizontal ray of symbols i(,~,m)i(n+l,m)"" deter- 

mines all symbols y(j, k ) , j  >__ n, k >_ m of any y E Y with y(fi, m) = i(r,,m), fi >_ n, 

as long as y ~ V*. 
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Similarly any Ms-allowed vertical ray of symbols i(s,t)i(s,t+l)"" determines all 

symbols y(i , j ) ,  i >_ s, j >_ t of any y E Y with y(s , j )  = i(,,j), j _> t as long as 

y~Y*. 
Pictorially this means that a vertical ray of symbols determines all symbols to 

its right and a horizontal ray of symbols determines all symbols above it. I 

Let ]F C E z2 be those doubly infinite arrays where all rows are MT-allowed and 

all columns are Ms-allowed. For ~ E 1~, let ~(9) be the point in [0, 1) associated 

with the first quadrant. Let T and S still represent left and down shifts. Note 

that T07~ = ~T and S07~ = 7~S. 

Next, let Ad be the space of all To and So invariant Borel probability measures 

on [0, 1). This is a weakly compact convex space. Let Ado C .&t be the ergodic 

measures minus the point mass at zero. In this last case it is trivially true that 

h,(To) -= 0 = h,(So). 

Remark 2.4: If/~ E .M and x E V, x ~ 0 then/~(x) = 0. I 

Because V is a To and So invariant set, any # E .M0 must give it zero or full 

measure. Using this remark and that we've already excluded the point mass to 

zero, it must be that #(V) = 0. 

Remark 2.5: Any measure ~ E .M0 lifts to a unique T and S invariant Borel 

probability measure on 1~. | 

Let A~4 be the T and S invariant Borel probability measures on 1~ and ~ 0  be 

the ergodic ones (excluding the point mass at 0). 

Let P be the partition of 1~ according to the symbol 9(0, 0). 

o o  c o  
Remark 2.6: For any ~ E A:t, Vj=0 T- J (P )  = Vi=o s - J ( P )  ~-a.e. I 

Remark2.7: For~EA~t ,  hi,(T) = h~(T,P) and h~,(S) = h~(S ,P ). ] 

THEOREM 2.8: For f~ E ]~4o and any T and S invariant a/gebra A, 

hi,(T, A) = 1,°g---~-Ph~(S, A). 
log q 

For the rest of the paper we fix an arbitrary # E Ado. 
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3. The 50 Distribution 

Recall that p and q are two integers that generate a nonlacunary semigroup. 

Specifically, we can write 

p poTr~X.., nh . . .  = ~rh , q =q0~'~' 7r~ h 

where p0,qo,~q,.. . ,  7rh are pairwise relatively prime integers, n l / m l  > " "  > 

n h / m h  and either P0 ¢ 1 or h _> 2. This form comes from writing p and q in 

their prime number decomposition and grouping the terms as shown. 

Fix a point ~ E l;'. Let tP(!)) = z e [0,1). Then 

X i }p--1 

T0- ' (z)= P + P  ,:0 

For 9 this corresponds to the p possible symbols that could be at position ( -1 ,0)  

that are consistent with the first quadrant of 9. 

Given this 1-1 correspondence, the terminologies will often be intertwined. In 

particular, {~ + '-' ~P-~pJi=0 will be referred to as the preimages associated to ( -1 ,  0). 

Define k01 to be the smallest integer such that k o l m l  >_ n l .  Clearly ko lmi  >_ ni 

for i -- 1 to h. Notice that k01 is defined so that 

qkO, qkoO, r'~tko, . . . ~r.,~hko, qor? t ko l -n ,  . . . lr'~hko,--nh 

p po~r'~' . . .  7r'~ ~ po  

Thus 
lqk°Xz q k°xi Iqk~X +__ . + / P - l =  Z i t~  po-a 

S2°'TO-X(x) = P P J,:o Po/e=o 

This corresponds in our symbolic representation to the p0 possible symbols at 

( -1 ,  k0x), given a first quadrant of symbols. Notice that 

SkoTol(x)  { q k x _ F  i ~po-1 
= - -  for every k > k0t 

p po ) i=o 

so in fact there are P0 possible symbols at ( -1 ,  k), k > k01, given a first quadrant 
i "tpo-1 of symbols. As before, we will often refer to iqh~ + ~oJi=0 as the preimages - p 

associated with ( -1 ,k) .  Let x01 be that particular r ~ + ~o which is the actual 

value of ~(Sk°'T-a~). 
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60(~,I) = El, S-k° 'T#- '(zo,  + z-- - ) [VT-i (P  ) (~). 
Po i=o ] 

60(0,1) is a distribution on 

1 2 p0 - I} 
O, Po Po ' Po 

where the number associated with 0 is the expectation of the actual preimage. 

Next consider 

T o , ( x )  = z + - '~ J i : o  

217 

{ gkO,x qkO, i t f  -1 
Sk°°'T°'(x) = --7- + - ~ - , = 0  

qk°" x % It i • , .  7r h . 

= - - - 7 - +  - i = o  

These are the p~) possible preimages associated with position ( - r ,  k0~). Let x0r 
i '  

be that particular ~ + -- which is the actual value of ~(Sk°~T-~)). p~ p~ 

Definition 3.1 (General): 

6°(Y'r) -~o = El, S-k°'Tr~-l(Xo~ + -~o)l T-i(P) (~/). 

This is the probability that ~(0) extends under SkoO'To ~ to a point translated 

by i/p~ from T(Sk°'T-~#). 
For the next lemma we want to see what happens to this distribution when S 

is applied to Y. 

Let k0r be the smallest integer such that korml >_ rnl. As before this also insures 

that korrni ~ rni for i = 1 , . . . ,  h. Then 
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Notation: 6o(0, r) is the distribution put on the points li ]-'~p'°-I just de- t I~OJ i=O &S 

scribed. Let 0j be an element in Y with ~(0j) = x/q + j/q E So1~(0) with 

O~(i,e+ 1) = 0(i,e) for e > 0 and all i. Let ~0, = ~(S~°r-IT-'O). Then 5o(Oj,r) 
/ i , /_r lp~-1 where (~0 (Y j, r)[i'/p~] is the ex- is the distribution put on the points t //'0/i,=0 

peetation of Y:o~+i'/p~ given x/q+j/q. Define $50(0j, r) to be the distribution on 

{i/-~Ip'°-I where $50(0j, r)[i/p~] is the expectation of x0r + i/p~ given x/q +j/q; I PO I i= 0 

this is just 50(0j,r) rearranged by the correspondence between {.~0, + i'/p~} 
and {xo~ + i/p~} given by multiplication by q mod p~, which corresponds in the 

symbolic space to an application of S. Also, let 

E + x = E i, S~o-'(q+ ~)IVT-i(P)  (0). 
~/ i=0 J 

LEMMA 3.2: 5o(0,r) = $5o(0i,r) for j = 0 to q -  1. 

Proof'. We see xor + i/p~ at Sko°'Tor(X) only if for some j ,  

So,(X) x j S,O,+,T_,.(z_ j_ i = - + -  and o o q + ) = x o , + - - .  
q q q P~ 

We can write this as 

Taking the entropy, 

5o(0, r) =/=~oE + z SSo(0j,r). 

[ ] ] J z SSo(O.i,r) h[5o(O,r)]=h [ ~ E  q + q  
Li=O 

>_ E E + x h[SSo(Oj,r)] 
j=O 

= ~ E  + x h[~o(0j,,)l 
j=O 

where the inequality is an equality iff $5o(0j, r) is the same for every j and thus 

in fact equals 5o(0, r). Notice that 

h[5o(0j, r)] = h[SSo(0j,,)] < h[5o(0,,)] 
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because in the last we are conditioning on less information. But 

using the S-invariance of/~. Together these give 

h[50(yi,r)] = h[60(~,r)] for every j 

and we get the necessary equality. | 

The above lemma says that the expectations of the symbols at ( - r ,  k0r) are 

independent of the symbol at (0,-1).  

COROLLARY 3.3: 

50(S~,r)[q~-zr mod 11 = 50(~,r)[~]. 
Po 0 

Proof." On the right is the expected value of xor + i/p~, given ~(~). By Lemma 

3.2, this is the same as the expected value of q x (xor + i/p~) given ~o(S~). But 

q x xor = ~(Sk°rT-rS f t )  so this equals the expected value of the real preimage 

plus qi/p~ mod 1, given ~($9). | 

Recall that in the symbolic representation, we are given the first quadrant of 

symbols and we have various posibilities for the symbolic paths in the second 

quadrant, which correspond to preimages of x = ~(~). For 80 we are interested 

in the preimages that correspond to each position ( - r ,  k0r); these are the possible 

preimages of the point x under the map Sk°rT -"  and we know there are p~ of 

them• To each preimage associated with ( - r  + 1, k0 (r-l)) there corresponds P0 

possible preimages associated with ( - r ,  k0r), altogether making up the total p~. 

The next lemma states that the probability of a certain preimage corresponding 

to ( - r  + 1, k0 (r-i)) is exactly the sum of the probabilities of the associated p0 

preimages corresponding to ( - r ,  k0r). 

LEMMA 3.4: 
= 

where this sum is over all j such that jzr~ 1 .. ~r~ ~ iqk°'-ko(,-1) mod r-1 
• = , P O  • 

Proof: The expectation of Z0r + j / p ~  equals the expectation of x0 (r-l) + i/P~ -1 

multiplied by the expectation of xor + j /p~ given x0 (r-l) + i/P~ -1. In other 
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words, 

This is for i and j such that 

i J l= s~o,-~o(,-,,(xo (~_,)+ p--~). To(xor + p~ 

Fix i, sum over all such valid j .  Note that the sum of the second terms is exactly 

one. The j 's  thus described are such that 

pj  q~O~-ko (,-~)i 
p~ pL-' 

7r~' . . .  7r~hj qkO.-ko (~-~)i 
¢~ 

pg -~ pL-' 

as wanted. I 

COROLLARY 3 . 5 :  

Proof." 

and 

~0(T~, 2r) determines ~o(Ti~, r + i) for 0 < i < r. 

By Corollary 3.3, 60(T~, 2r) determines 60(S -ko ( , -oT~,2r ) .  Let 

w2~ = ~( Sk°(2")T-2~ S -~° ('-')T~) 

w~_, = ~( S k° ('-') T-~+i S -ko ( '- ' )Try) = ~( T~ # ). 

The expectation of w2r + j/p2or, given 

~(S-k. ( '- ')Try), 

is the expectation of w2r + j /p~r given Wr-i multiplied by the expectation of 

wr-i given ~(S -k° ( - -oT~).  We can write this as 

5o(S-k°( '- ' )TrfJ,  2r) ~o ~ = 

S~ [s-k°(2r)T2r~-I (X2r-~-pJ~or) ,-k°(r-i)Tr-i~9-i(Wr_i) ] 
x E~[S -k° ( ' - ' ) T ~ - i ~ - ' ( w ~ _ i ) l ~ - l ~ ( S  -k° ('-')Tr(9)], 
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but only if w2r +j/p2r and w~-i axe consistent with one another. In other words, 

j must satisfy 

pr+i (X2r nt" ~2Or ) = qk°(2")-k°('-i)(Wr-i), 

which will occur iff 

• 7r 7, (~+0.. .  r~h (r+Oj 
p,'+zj _ 0 rood 1 ¢~ = 0 rood 1 
p0 , g- ,  

¢* j = kpg -i f o r k = 0 , . . . , p g - i - 1 .  

Then 

[-~02r J p~o +i 6o( S-ko('-')T~ fl, r - i)[O]" 

But we know the first and last terms, and thus can find the middle term. II 

LEMMA 3.6: If  !)1 and Y2 agree on their first quadrants, then ~0(yl,r) and 

~0(y2, r) differ by a translation mod 1 of size ~( sk°rT-r  ft2 ) - qa( Sk° 'T-~ 9l ). 

Proof: By definition of 60, only the first quadrant is used to find the expecta- 

tions. The value at ( - r ,  k0r) is used only to determine the ordering which begins 

with the expectation of ~(Sk°'T-~9). Thus 60(~)1, r) and ~0(~)~, r) have the same 

weights but with different starting points. II 

4. Preimages and Their Movement 

Definition 4.1: Define /ca/ for a = 1 , . . . , h  - 1 and j _> 1 to be the smallest 

integer such that 

jna+l - kai(ra~+lna - na+lma) <_ O. 

[ Note that n~/ma > na+l/m~+l, so such an integer exists.] 

Define khi = 0 for every j > 1. 

Definition 4.2: 
o o  o o  e o  a - - 1  

= VT-'(P) v V v V V • 

i = 0  i = 1  i = l j = l  

oo oo 

Z)o = V T - i ( P ) v  VS-k°'Ti(p).  
i----0 i----1 

Let 79,-1(!)) be the array of symbols given by the first quadrant of ~), !)(-i,  k0i) 

for i > 1, and f l(- i  - kiirn j, kjinj) for i > 1,j  = 1 to a - 1. | 
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In Section 5 we will construct distributions ~a, a = 1 , . . . ,  h, that will be similar 

to 6o. Instead of moving the preimages up by S, we will move them diagonally 

by S " ' T  - 'n" ( 'up the staircase'). T~a_~ holds the information from previous 

staircases. 

The objective for this chapter is to show that given T)~-I, the possible preim- 

ages corresponding to position ( - r ,  0) are a coset of the group 

G ,  ° - ~ , ,  , i = O , . . . , ( ~ "  . . . .  % 
7r h 

the possible preimages corresponding to position ( - r  - karma,  ka,.n~) are a coset 

of the group 

, i = O , . . . , r  a - 1 ,  

and the correspondence between the two is a 7rrn~ +' rnh + " "  ~r h to one map. Further 

application of S n° T -m" will yield a 1-1 map with movement given by multipli- 

cation by an integer that depends only on r and a. | 

Notat ion:  When the letter d is used in prescribing the range of an index, it 

always refers to the denominator of the fraction appearing in the expression in 

question. 

If :D0(0) is given then it is enough to assume D0(0) = 0", since the possible 

preimages in the general case are just a coset of those found in this case. In 

section 3 we showed that 

ToT(0) = - -  

P~ Ji=0 

had 

i ' = 0  

If we specify i' = 0 (i.e. that V0(~)) = 0) then we are left with 

{ 7' ~n h 

We will prove the objective of this section by induction on a. It will proceed 

as follows: assume that if D~-a (Y) -- 0 then the possible preimages associated to 

( - r , 0 )  a r e  { i / ~ 2  o ~ . ~ d - ,  "" "rh ~i=0" This is true for a = 1, as stated above. We will 

show that: 
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(i) The possibilities associated to ( - r  - k~rm~,  k a r n . )  are {i/¢c~ "° }d--~ and  

the map between the possible preimages associated to ( - r ,  0) and 

( - r  - ka rma ,  k : r n , )  is ~'rn"+',+l . . .  rr hrnh to 1. 

(ii) For the next step in the induction it is enough to consider D~(~)) = O. 

This will reduce the possible preimages corresponding to ( - r ,  O) down to 
{~/~rrna+l rnh d-1 
~1" a-t-1 " " " 7 r h  } i : 0  • 

LEMMA 4.3: Given  ~ ) a - - l ( Y )  = 6 ,  the  p re i mage  assoc ia ted  to ( - r ,  0) d e t e r m i n e s  

t he  preimage at ( - r  - k m ~ ,  kn~)  t'or every  k >_ O. 

P r o o ~  If the preimage associated to ( - r ,  0) is fixed as b/Tr' 2" ~ ,,h r • . . %  , t h e n t h e  

possible preimages associated to ( - r  - k i n , ,  0) are the 

7r2"( r+k" ' )""  ~rh ' h ( ' + k ' ' )  i=0 

such that 

• n a r  nhT • 

{ "  nhkma} d-1 
Thus the possibilities here have the form ft + z/~r~ °kin . . . .  ~r a i=0" Apply 

Sko n° to get 

mtkna ma kna m h  kna • • "'7¢ a *''Tr h Z ~d-1 qo Tr . 
qkn,  ft + ~---n:km---2------nlk~-2. - = 

,, a " " " 71"h J i : 0  

_t_k(n.m.+t-m°n.+l) _k(n.mh--m. nh):~ qkn.~ 4- q 7 t a +  1 " ""  ~ h  ~ f  = qkn .~  mod 1 .  

This gives the preimage as wanted. 
rn h d--1 In order to prove statement (i) consider what happens to {i/~r~" . . . .  ~rh }i=0 

when we 'move up the staircase'. Associated to ( - r  - k m a ,  O) we have 

rr"n=(r+km')'"~r2 ' ( r+k' '°)  i=0 " 

¢kn° to get Apply "o 

kna mlkna mhkna" }d-1 
qo 7rl . . .  rr h z 

. . . .  ~ o )  = 

7ra " " " 7rh i = 0  
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- - ~  - - - - ~ - ~ .  . 

71" a • .  7r h 

Since n,,/m,, > ni /mj  for j = a + 1 , . . . ,  h, the terms in the above fraction have 

positive exponents. Let k = kar. By Definition 4.1 we have 

kar(ma+ln~ - na+lm~) >_ rn~+l. 

CLAIM 4.4: kar(min~ - nim~) > rni for i = a + 1 , . . . ,  h. 

Proof." Since n,+l/m~+l > nJrai for i _> a + 2, we get 
rna+l na rna mi n~ ma 

< for i  > a + 2 .  
~ a + l  r r n i r r 

Using Definition 4.1 we see the left-hand side is _> 1/k~ so that the right side 

must also be. Rearrange the terms to yield the result. | 

Proof. of (i): Using Claim 4.4 we see that the only remaining preimages as- 

sociated with ( - r  k~m~,k~n~)  are {i'/~r~ TM d-1 -- }e=O, so that the map must be 
7~rna+l rnh a+l . . . ~r  h t o l .  | 

Proof. of (JJ): From Lemma 4.3 it is easy to see that the movement 'up the 

staircase' is an endomorphism. This tells us two things. First, if i * = 0 (i.e. 

7)a(~) = 0) then the possible preimages left at ( - r ,  0) form a subgroup {z/b}i=o." ~-1 

Secondly, if i I ~ 0 then the possible preimages at ( - r ,  0) form a coset of this 

subgroup. By Lemma 4.3 these cosets are disjoint. Each coset has b elements and 

~,~. r,h possible preimages at ( - r ,  0). their union must equal the original r¢a ---Tr a 

Thus b = ~n.+1,,~+1 . . .  rhr,~h. This completes the induction. | 

What remains of our objectives for this section is to show that further ap- 

plication of S"*T -m* to the preimages corresponding to ( - r  - k~ma, k~na) 

yields a 1-1 map with movement given by multiplication. We previously showed 

that the possible preimages associated with ( - r  - k~m~, k~n~) are a coset of 
. i  n a r ' ~ d - 1  3/Ir~ lj=0" Similar arguments show this for ( - r  - krn~,kna) for any k > k~r. 

LEMMA 4.5: There is a 1-1 correspondence between the preimages at 

- kmo ,  kno)  and - (k + (k + f.or k _> 

Proof'. This follows just as the argument for the proof of (ii). Specifying the 

value at ( - r  - (k + 1)m~,(k + 1)n~) restricts the values at ( - r  - km~,kn~) to 

a coset of the possibilities that one gets when the first value is given as zero. 

Lemma 4.3 tells us all these cosets are disjoint and thus each eoset can have only 

1 dement  in it. | 
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The preimages associated to ( - r  - km~, kn~), for k _> k~r, are 

~(SknoT-"-k'*f#) + {il~r~ .~} 

and at ( - r  - (k + 1 )m. , (k  + 1)n.)  they are 

• nat ~ O ( S ( k + l ) n ' T - r - ( k + l > m ° ~ )  + {g/Tra }. 

By Lemma 4.5 we can define a 1-1 map from {i/Tr'~ °~} to {j/~r~°~}. Denote this 

map by f ,k.  

LEMMA 4.6: f ,k is the same map for every k >_ ko~. In other words, ff 

then 

i C 

qn'(jl - j 2 )  C l  - -  C 2  

n a t  pro° Ira 

~n. in the denominator, which is a contradiction. On the left we do not have ~r. 

| 

LEMMA 4.7: The map from the preimages associated to ( - r  - kma, kn.) to the 

preimages associated to ( - r  - (k + 1)m.,  (k + 1)n.)  is given by multiplication by 

an integer we will denote by m*~ r. 

Proof." The map far is an isomorphism. The only group isomorphisms on the 

{z/d}i=o is multiplication by an integer relatively prime to d. | group " d-1 

But then we have 

f~k,( / _ ) =  c fo ra / Ik '  > k~r. 
• ] r ~  a r 

Proof: Assume not. Then at kl we can find j l  such that 

q"'i qn'jl cl 
n a t  

and at k2 we can find j2 such that 

qn'i qn'j2 c2 
~ a f  pma 7r~"° p~. ~r~ 



226  A . S . A .  J O H N S O N  Is r .  J .  M a t h .  

In review, this gives us the following. Given D,- I (O) ,  the possible preim- 

ages associated with ( - r ,  0) are a coset of {i/Tr~ ~* r~hld-1 " ' "  ~ h  J i = 0 "  Apply the 

map  S g ' T o  ~" to these. After ka~ steps we have only a coset of ti/~r r"°ld-1 t / a J i = 0  
and ~karnaT-karma ~rrna+l rnh ~'0 -o acts as a "~+l ""Trh to 1 map. Further application 

of S ~ ' T ~  m* acts in a 1-1 manner and moves Xar + i/Tr~"" to q"'Zar/p rn" + 
, • I , - n a  

1Ttar~/Tra . 

5. T h e  D i s t r i b u t i o n  6a For  a = 1 to  h 

- . .~ r n a l d - 1  Recall that  ( - r -  karma, karna) is associated to the preimages/Xar  tz/Tr a Ii=0, 
where x~r = ~(Sk*'n"T-r-k*'m°y). 

Definition 5.1: 

We want to compare b'a(!),r) and ~a(S'"T-m'~/ ,r) .  Given c2(!) ) = x, the 

preimages associated to ( m a , - n a )  are 

p ~ " x  p m ° j  P m ' x  P~*Tr~ l m a - n a m l  " '" 7 r n ° - t m ' - - n ° m a - '  .7 
_ _ +  _ _  _ _ _ +  

n a l ? l ° - 1 . 1 1 2 a - - 1 7 ~ a n a - I - 1  n a m h - - n h r t l  a qn° qn .  qn .  qo 7 r a + l  " " " r rh  

which we will denote by pm*x/qn* + p'j/q*. Let Y1 be that  element in 12 with 

and 

p~* x p' j 
~ ( f j j )  - _ _  + qn. qt 

~j(i-ma,k+na)=~(i,k) for i e Z ,  k_>0. 

li/Tr r"'~d-1 where 6a(O,r)[i/lr~ n'] is the ex- 6a(~,r) is the distribution put on t / a I/=0 

pectation of xar + i/~r rn° given T)a-1 (~). Let 

xar = qO( S(k 'r- ' )n 'T-r-(k° ' - ' )m'~l)"  

l - , , -r- . ,d- ,  where 6o(~i, ~)[i'/~ ~°] Then ~a(~j,r)  is the distribution put on t , /7 ,  a le=0 

is the expectation of ~ar + i'/~r~ ~', given :Da-~(~)j). There is a 1-1 corre- 
-tt_rnald-1 and {xa~ + i/Trra n• d-i spondence between {Y:ar + "~ / ' ~  1i'=0 )i=0 by Lemma 4.5. 

Let m*r6a(~lj,r ) be the distribution put on {i/Trra n• }i=0d-1 by mar6a(yj,r)[z/Tr a *  ^. " rna] 
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equals the expectation of x~,. + i/lrr~ n° given Da-l(~j) .  This is just 6a(flj,r) 

rearranged by the correspondence from Lemma 4.5. By E(~li[9) we mean 
OO 

Ei,[S ~" To m` ~/I V T- i (  P)](fJ). 
i=0 

LEMMA 5.2: 

~(~),r) = m:~Sa(~/,r) f o r j  = 0 to (q' - 1). 

Proof'. We have x,r + i/~r~ n° at Sk°'~'To~-k° 'm'(x)  iff 

T~".So,°(z)  - Pm'_____~ x + P'J 
q". q' 

and ~o¢(ka"+l)narl'-r-(k"r+l)m:" o brings this to xa~ + i/Tr rn° . Write this as 

q' 

L(~,  r) =- ~ S(~jl~)) m*.,,.6,,(O~, r). 
j=0  

Then qt 

hIQ(9, r)] >_ ~ E(f111f/)h[ra*~6~(fCj, r)] 
j=0  

where the inequality is equality iff m*~6a(~)j, r) is the same for every j and thus 

is the same as 8,(~, r). But 

h[tf~(~lj, r)] = h[m*~6~(flj, r)] _< h[5~(fl, r)] 

because the left-hand ones are conditioned on more, and 

f hI o( j,,)left = f hI o( ,,)left 
using the T +a and S ~1 invariance of ft. Thus h[6~(fli,r) x q] = h[L(~,r)]  and 

we get the result. | 

COROLLARY 5.3: 

di~(S T y,r)[~a-~. ). n .  - m ° ^  m ,z 
\ / t T l - ~ a J  

Proof'. On the left is the expected value of x,r + i/~r~"*, given 73,_x(0 ). By 

Lemma 5.2 this is the same as the expected value of S~ 'Tom' (xa ,  + i/Tr~ n° 

given 7)a_1(S n° T -m" ~I). But 

na - - m a  Xar : ~(s(kar+l)naT-r-(kar+l)ma~]) and i m*~rZ So To S ~ ' T o m ' ( ~ , ~ ) -  T ~ .  

as specified. | 
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This corollary says that the expectations for the preimages associated to 

( - r  - k ~ m ~ ,  k ~ n a )  are independent of the possible preimages at (m~, -n~) .  

LEMMA 5.4:  

where the sum is over all j such that 

poH~r~'  j = i  x (rn.*(r_l))k"-k'C "-' ,  mod 7r(~ "-1)"" 
iOa 

Proof" The expectation of Xar + j / l r  rn" equals the expectation of za(r_ D + 

i/lr(a r-l)'*" multiplied by the expectation of xa~ + j/r,~r,, given xa(r-1) 

+i /~(~-1)- . .  Write this as 

= 

x E~, S" 'T -" '~o  - '  + 7r:.----- 7 ~o -~ + V : D . - I ( O )  o 

_ . ,  ( r - - 1 ) n .  This is only for i and j such that if we move x , ( r -O t z/Tr~ up the staircase 

kar - ka(r-1) times it equals za~ + j/Tr r'u moved horizontally to the right one 

step. In other words, i and j such that 

pz .~  + . = S O T O (zo(~_l))  + 
(m*(r_a))k"-k.<.-t)i  

7r(r--1)n. a 

Po 1~ 7r~' j 
i#a (m*.(,--a)) k ' ' -k°~'- ') i  

¢~ _ ( ~ - 1 ) - ,  - ( ~ - 1 ) . .  
?ra ~a 

which gives us the j as specified. Fix i, sum over all such j .  This gives the result. 

COROLLARY 5.5: 5a(T~9,2r) determines 6a(Ti~l,r + i) for 0 < i < r. 

Proof" By Corollary 5.3, 6~(Trg, 2r) tells us 5=(S-k°<'- ')n'Tk"¢'-t) 'n°Tr~),2r).  

Call this 6a(fi, 2r). Let W2r = ~(Sk"¢~')" 'T -2r-k'¢2"~'~° fi); this is used to compute 

5,(fi, 2r). Let 

wr- i  = ~o( sk '~ ' - ' )  "" T - (  r -O-k 'C ' - ' ) ""  fi ) = ~o( T~ O ). 
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By Definition 5.1, 

[ ] 
Write as 

If w2~ + j/Tr2 "2~ is consistent with w~-i then the expectation of w2r + j/~r2 °~ 

given ~._1 (t~) equals the expectation of vo2~ + j / , r2 "2~ given w~-i and 77._~ (fi) 

multiplied by the expectation of Wr-i given ~ . - 1  (fi). Write this as 

For the two to be consistent means i and j satisfy 

• j q(k°O,)-k'('-'>"" 
pr+'(w2r + ~.2°2---'7) = p(k°C~)_k°~,_O)~, w,--i 

p'j 
¢¢, - - - - 0  m o d l  

71.aria ( r - i  ) 

j = kzr~ °('-i) for k = 0 to (~ra n'(r+O - 1). 

Thus [ [ k ] 
E w2r + wr-i can be written E w2r + ~r~.(~+i ) w~-i 

This differs from ~a(Ti~),r + i)[k/lr~ °('+i)] only by the locations these expec- 

tations are associated with. The first is at ( - r  - [ka(2~) - k,( ,_i)]m.,  [k,(20 - 

ka(r-i)]n~) and the second at ( - r  - k~(~+i)m~, k.(~+i)n~). By Corollary 5.3 one 

is just a permutation of the other so in fact we can write 

E w2r+  D,-1 (fi)=6,(Ti~),r+i)[Tr2.(~+i)] xE[w,- i l : / : ) , - l l ( f i ) .  

Rewrite again as 

[ n*k ] 

We know the first and last terms by Lemma 5.4, and thus can find the term in 

the middle. | 



230 A.S .A.  JOHNSON Isr. J. Math. 

LEMMA 5.6:  / fYl  and  Y2 ]'/ave ~)a- l (Yl )  = ~a--1(92) then ~a(91, r )  a/'/d ~a(O2,r)  

differ by a translation (rood 1) of 

~O(Sk*,n*T-r-ko,m*92 ) _ 9~(sk . ,n .T-r -k* ,mo92) .  

Proof." In Definition 5.1 the only difference would be in the ordering, which only 

depends on x,~ for both. II 

6. Symmetric Points 

Detlnition 6.1: A point 9 E 1~ is 60-symmetric if there exist two points Yl and 

Y2 such that 

(i) ~0(91 ) = ~0(92 ) = ~O(9 ). 

(ii) There exists m such that 91 ( - m ,  kom) # 92(-m, kom). 

(iii) For every n,m, 6o(Tmga,n) = 6o(Tm92,n). 

Detinition 6.2: A point 9 E l;" is 5a-symmetric if there exist two points 91 and 

92 such that: 

(i) ~o-~(9~) = ~a-a(92) = ~ . -a (9 ) .  
(ii) There exists s such that 

91(-  - k . m . ,  # 92(-  - k . m . ,  ko.n.). 

(iii) For every i , j ,r ,  6a(r isJ91,r)  = 5,(TiSJ92,r). 

We want to show in this section that the set of each type of symmetric point 

is T and S invariant. 

LEMMA 6.3: The set of 6o-symmetric points is both T and S invariant. Nnce [~ 

is ergodic, this set has measure 0 or 1. 

Proof: Say 9 is 60-symmetric and let 91 and 92 be as specified. 

T-Invariance 

We want to show that Tga and T92 satisfy the definition. Note that 9 ( - i , j )  = 

Tfl(- i  - 1,j).  

(i) Obviously ~(T92) = ~(Tgx) = ~(Tg). 

(ii) Since ~x(- i  + 1,koi) = 92(-i + 1, koi) for i _< m, 

~(S ko ('-')Ti+191) ---- ~O(S ko ('-~)T-i+1!)2)" 
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Then the symbol at (-i -{- I, koi) is also the same since all cancellation is done 

here after ko (i-i) steps. So 

T~h( - i ,  koi) = ~h(-i  -{- 1, koi) = !)2(-i -{- 1, ko/) = T~/2(-i, koi) for i <_ rn. 

Thus 

~( Sk°~ T-m+ l ~l ) = ~( SkO~ T-m+ ~ ~2 ) 

and yet ! ) l ( -m,  ko,n) ¢ ~2( -m,  kom), showing that  !)1 and Y2 correspond to 

different preimages and still will when moved up to ( - m ,  k0 (,n+l)). Then 

TI)I (-m - I, k0 (,,,+I)) = Yl (-m, ko(m+1)) 

¢ !~2(-m, k0(m+a)) = Tfl2(-rn - 1, ko(m+a)). 

(iii) 5o(TmTf/a,n) = 5o(T'~+x~1,n) = 6o(T'~+~O2,n ) by assumption, which 

equals 6o(TmT02, n) as needed. 

S-Invariance 

We want to show that S!)1 and S!)2 satisfy the definition. 

(i) Obviously ~(S~)~) = ~(S!)2) = ~(S!~). 

(ii) !) l(- i ,  k0/) = Y2(-i, k0i) for i < m says that  ~(Sk°~T-i fh)  = ~(Sk°'T-if t2).  

All cancellation is done after moving up k0/steps thus 

qo(Sk°'+XT-'f/1) = ¢p(Sk°'+lT-i~12) ~ !)l(- i ,  k0i -{- 1) = fl2(-i,  koi + 1) 

=> Sfj~(-i, ko~) = SO~(-i, ko~). 

But then 01(-m, kom) ¢ !~2(-m, kom) so 

~(Sk°'*T-~!)l)  ¢ ~(Sk°'*T-"*f/2) =,. ~(Sko,~+aT-"I),) ¢ ~(Sk°"+lT-mft~)  

:=~ Ol ( -m ,  kom + 1) ¢ ~12(-m, kor. + 1) 

=> Sf/a(-m, t~o,,,) ¢ SOd-m,  kOm). 

(iii) 6o(TmSfh,n)  = 6o(T~fh ,n)  shifted by q 

= 5o(Tm~12,n) shifted by q 

= 5o(TmS~t2,n). | 

LEMMA 6.4: The set of ~,-symmetrlc points, a = 1 to h, is both T and S 

invariant. Since/5 is ergodic, this set has measure 0 or 1. 

Proof." Recall that  khi ---- 0 for all i, by Definition 4.1. Let l) be a symmetric 

point and Yl, Y2 as specified. 
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T - I n v a r l a n c e  

(i) Obviously :D._I (T~I) = 9._1 (T!)2) = D._I (T!)). 

(ii) We want to show that 

Isr. J. Math. 

T y l ( - ( s n t - X ) - k a ( s - F 1 ) m a ,  k a ( s + l ) ' o , a )  7£ T y 2 ( - ( s - t - 1 ) - k a ( s . t - 1 ) m a ,  k a ( s + l ) ~ a )  

which is equivalent to showing 

r)l ( - s  - k~(,+l)m~, k~(,+l)n,) # ~)2(-s - k,(,+l)m~, ka(~+l)na). 

For a = h this will be true by assumption. For the rest, recall that 

an, possible preimages and this is the first such s. Given Da-l(~) there are 7r a 

associated with ( - s  - k , ,m~,  ka,n~) and further application of S~*To T M  is 1-1. 

~1 and t)2 correspond to different preimages and still do after we apply 

S(k,( ,+l)-k,o)n, ,  To-(k,(,+~}-k*o)m*. 

Thus they have different symbols at ( - s  - k .( .+l)m.,  k.(~+1)n.). 

(iii) ,S~(TiSJT~)I, r) = ~a(T i+1SJ~I, r) 

= 6~(Ti+lsJ~I2,r) by assumption 

= 6~(TiSJTfl2, r). 

S - I n v a r i a n c e  

(i) Obviously Va-I(S~I) = D . - I  (S~2) = 9a_1 (S~). 

(ii) Let b be the first integer such that  ma _< bna. Let s be the first integer such 

that ~ l ( -S  - ka,m. ,  k . . n . )  7£ fl2(-s - ka,m.,  k . ,n . ) .  Then we also get 

~) l ( - - s  --  k a ( s + b ) m a ,  ka(a+b)na) 7 £ ~)2(--s  -- ka(s+b)ma, ka(s+b)na) 

and so of the possible preimages associated with ( - s  - k~(.+b)m~, k~(.+b)n.), ~)1 

- /lr~"* But then the possibilities must correspond to ~ +cl/lr~"* and ~)2 to ~ +~2/ . • 

at (--s -- b - ka(s+b)ma , ka(s+b)na + 1) are q~ /pb + qci/pblrsn. + qj /pb which we 

can write 
q~ q' ci q'j 
p-"~ -I- ~ t  Tr n , b _ rn a Tr s n ~ -~- ~ t  ~. n . b _ rn * , 

y a a y ~ a  
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where pt, q,, and 7ra are all relatively prime. But for Cl ¢ c2 these are disjoint 

sets, since they are translations of the set 

p, Tr2~b-m, 

by different amounts. Thus 

~O(S k'(*+b~n'+lT-s-b-k'(°+b)m" Yl ) # ~0( ~k'(s+b)n" q'l T--s--b--ka(s+b)m~' 02 ) 

¢~ ~o( sk"('+b)n'T -s-b-k'('+6)m" Syl ) ~ ~( sk*('+')n*T -s-b-k'('+b)m° Sy2). 

Now to show there exists t < s + b such that 

S f t , ( - t  - k , , m , ,  ka tn , )  # S~l=(-t - ka,ma, k , ,na) .  

If we can find t < s + b  then we are done. Assume not; we will show that  t = s + b  

works. Since further movement is 1-1, the assumption also says that  

S y l ( - t  - ka(s+b)ma , ka(s+b)na ) = S y 2 ( - t  - ka(s+b)ma , ka(s+b)na ) for t < s + b. 

Using that  Da- l (S91)  = Da-1($92),  it is easy to see that  

~(sk'('+b)n°T-k°('+b)rn° Syl)  = ~(Sk'( '+~)"°T -k*('+b'm" S~2). 

So 01 and 02 have the same first quadrant at (--ka(,+b)ra., k.(,+b)n.) and the 

same symbols to the left up to s + b. There we know they correspond to different 

preimages so must have different symbols. 

(iii) 6a(TiSJSf11, r) = ~a(TiSJ+lft l ,  r) 

= ga(TiSJ+l~2,r)  by assumption 

= 5a(TiSJS~12,r). | 

h ^ 
LEMMA 6.5: Let B = [-Ji=0{Y;~) is a 6i-symmetric  point  }. Then  [~(B) = 0 or 1. 

Proof" B is just the union of T and S invariant sets. | 
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7. W h e n  the  Set  of  S y m m e t r i c  Po in t s  has Measu re  1 

Isr. J. Math. 

THEOREM 7.1: If  ~) is a 50-symmetric point then the group of translations under 

which 5o(fl, n) is invariant contains the group < b,, > where b,~ is a fraction whose 

denominator in /eas t  terms diverges to inanity. 

Proof." For ~ a ~0-symmetric point, there exists ~1,y2 such that at some first 

index m, yl ( - m ,  k0rn) ~ ff2(-m, kern) yet 60(~1, m) = ~0(y2, m). Thus ~o(Y, m) is 

invariant under translation by T(T-rn S ko" fll ) - ~o(T-rn S ~*" fl2) by Lemma 3.6. 

Since the possibilities for qo(T-rn S k0" ~)) are {~ +" rn pT-1 ^ z/Po }i=o , 5o(V, m)  is invariant 

under translation by (i2 - i l ) /p '~.  Notice that in least terms, the denominator 

is_>2. 

We will prove the theorem by induction: if 50 (1), J) is invariant under translation 

by u / v  with v nontrivial, then $0(y,j + 1) is invariant under translation by a 

fraction whose denominator, in least terms, is at least 2v. The first paragraph 

gives us our beginning step. 
.. ~ ~p~,-I 

The possible preimages for qo(T-JS~'°J~) are {Xoj + z/p01i= 0 . For j > m, we 

have Yl associated to xoj + il/p~o and !)2 to zoj + i2/pJo,il ~ i2. Thus 60(/~,j) is 

invariant under translation by (i2 - il)/pJo which we are assuming has the form 

u /v .  We also know 60(~ , j  + 1) = ~o(~2,j + 1) so ~o(~,j + 1) is invariant under 

translation by T ( T  - j -1  S ~'° c~+~)ft2 ) - ~ ( T - J - I  S k° (~+~fl~ ). 

The possibilities for qo(T - j -~  S k° ~+~y2) are a subset of 

i = zo O+~) + p~--~-i- + 
'-o ~i 0 Po Ji '=0 k=o 

such that 

p ×  x0 ( j+ l )+pT+l  + = qkO Cj+l~-koj xoj + • 

But the left side is exactly 

qkOO+l)-koj XOj + 7r~1 " " ". 7rnh i~ mod 1, 

so the subset we want includes only i ~ such that 

• c~' . . .  7r~hi ' = qk°C~+'~ -k°~ i2 rood po 3. 
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Since all the coefficients are relatively prime to p~, such a unique i' exists; call it 

i~. Similarly the possibilities for 

k/, 
¢R(T-J- I .5 'koO+' )Yl)  = XO(j+ l )q-  p--~i- ar - ~00 Jk=O " 

Thus ao(~,j + 1) is invariant under translation by a number of the form 
4t "l f ,,,.,J'4-1 (iS - "x,,teo + h/po where 0 < h < p0- 

Recall that (i2 - i l ) / g  = in least terms. Thus 

qkOCj+,>-koi (i2 -- ix) qko(i+'~-k°~ u 

p~ v 

But by the last paragraph the left side of this equation equals 

,fl.~1 na ", ' ,  j • . .Tr h (z 2 - z l ) / p  0 

and thus 
i~  - i~ _ q k o ~ i + ~ ) - k o i  u 

Denote this by q'u/Ir'v. We can now write the above translation as a number of 

the form 
q'u h q'u + ldvh - - + - - =  

r'vpo Po rr'vpo 

This may not be in least terms anymore; we will show that the reduced form has 

at least 2v in its denominator. 

First consider v. We know v is relatively prime to u and since v is made up 

of components of Po it must also be relatively prime to q'. Thus v is relatively 

prime to q'u + 7r'vh. 

Next consider P0. There may be some part of P0 that divides u so write 

po = pip2 where p~ is relatively prime to u. Since v is made from p0's and v is 

nontrivial, P2 is nontrivial. But then there is some part of P2 that divides v, call 

it t52. Once again it must be nontrivial since v is. Then t52 is relatively prime to 

q'u and divides r 'vh.  Thus it is relatively prime to q'u + r%h.  So in least terms 

the denominator must be at least/52v _> 2v. | 
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THEOREM 7.2: /_f ~ is a 6,-symmetric point (for some a = 1 , . . . ,  h) then the 

group of translations under which 6.(fl, r) is invariant contains the group < b. > 

where b. is a fraction whose denominator in least terms diverges to infinity. 

Proof.." This is done similarly to Theorem 7.1 except now ~d will correspond to 

x°~ + id/Ir t"" at the first step and to 

x.(t+a) + _( t+l)n.  + t J k=o 

at the next, where 

tna P0HTrji~ = (rn*t)k*O+"-k*'id mod Ir~ . 
iS" 

Again assume that 6~(!~,t) is invariant under (i2 - il)/~rta "° which equals u/v  

in least terms. Then 6,(!), t + 1) is invariant under translation by a number of 

the form 

But 

"! "t h 
z 2 - h  - -  w h e r e O < h < z ' ~ ' .  + 

7[a 

PO H ~'ni t'gt "i - 

j¢ ,  = (m*t)k'O+a)-k°'(i2 -- i l )  _ (m*t)~'O+')-k"u 
7r atria 7r~rta - -  

and so 

Denote this by m'u/p'v.  

number of the form 

- 

tn .  - -  n j  
~a Po [I  7r i v 

j ~  

Thus 6~(~,t + 1) is invariant under translation by a 

m'u h m'u + p'vh 

p'vlr2" ~r~'" p'v~Q" 

As in 7.1, we can show that,  in least terms, v and a nontrivial part of 7r 2" will 

be in the denominator, l 

LEMMA 7.3: /.f ~ is a ~a-symmetric point for some a = 0 to h, then ~a(~l, n) 

converges weakly to Lebesgue measure on [0,1). 

Proof." Let A ,  be the set of rotations under which 6~(~, n) is invariant. By 

Theorems 7.1 and 7.2 we know .An D< bn > where bn is a fraction whose 
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denominator, in least terms, diverges to infinity. For any a E .An, any f E 

C(SZ),fSd6~(~,n) = SR~(S)d6~(O,n), where R~ is rotation by a. We can 

write 
1 

I s'd6.(~''')- I.,Z.,I Y'] I R:(S)d6.(~,.). 
aE,A~ 

But I.a.I, the cardinality of An, diverges to infinity, so 

, / 
1.4.1 

by definition of Riemann Integral. Thus f Sd6a(O, n) -+ f fdm.  | 

THEOREM 7.4: /J" a.e. point is $a-symmetric for some a between 0 and h, then 

I~ = m is Lebesgue measure. 

Proof." Using the definition of 6o and 6, and translating back, we see that 

R~(sko, T-,i)$o(~/, r) puts weights on 

1 p~ - 1 {xo,., xo,. + p7'" " ,~o,. + ----~--} 

and R~(s~ . . . .  T-.-~ . . . .  i)6:(!7, r) puts weights on 

1 r n i  __ 1 
{ X a r  ~ Xa r ~l_ rna ~ ' ' "  * X a r  ~l. "Ira =v.z }. 

~rii 71"a 

Generalize to any set C by 

[ i ] R~(s,o.T-.#)6o(I).r)IC]= E~ S-k°'T'~-'(C)I T - i ( P )  (!/) 

and 

R~(s~ . . . .  T-.-b . . . .  9) 6o(17, r)[Cl = Ei, [S -k'" no Tr+k..,~o ~-z  (C)IT) ~_a] (!7). 

Let Ba = {!7 : !7 a 6a-symmetric point }. We are assuming that 

l i  Ba = 1, 

thus there is at least one Ba with full measure. Then Y = Ba a.e. If a = 0, 

s s[ ] ll(C) = l~-,(c)d~ = E~ ~-'(C)lS k0, T - i ( P )  d~ 

B0 B0 
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= f E[, S-k°'Tr~-I(C)[ T-i (P)  d/~= R~,(s,o.T-.~)bo(fl,r)[Cld[~. 

Bo Bo 

By weak convergence of 60(9, r) to Lebesgue measure m, this has the limit 

f m(C)d~ = m(C)~(Bo) = re(C) x 1. 
Bo 

If a =  1 , . . . , h ,  

B,, B° 

= / E  r, [S-k""'T'+k""'~-~(C)lg,_,] dp 
B. 

= / R~(s~ . . . .  T - , - k  . . . .  ~)6,(~,  r ) [C ]d f i .  

B. 

By weak convergence of 6,(~, r) to Lebesgue measure m, this has the limit 

/ m(C)df, = m(C)f,(B.) = re(C)  x t.  

B. 

8. W h e n  the  Set of Symmet r ic  Points  has Measure  0 

Let ~ ,  be the minimal T and S invariant a-algebra for which the functions 

6,(~l,n) are measurable. "H0 is trivially S-invariant because 60(~, n) determines 

Q(Sk~, n) for all k E N. Let ~ar  be the minimal S-invariant a-algebra for which 

ba(Tr~,2r) is measurable. By Corollaries 3.5 and 5.5 the T/at are nested and 

refine to "Ha. 

LEMMA 8.1: The action o r s  on ?/or is periodic. Thus h(S, TY0r) = 0 and using 

the refinement, h(S,7"/0) = 0. 

Proof: This follows from Corollary 3.3. Note that the period depends on r. 
| 

LEMMA 8.2: hp(Sn',7-Lar) = h$(Tm',"Har) and thus 
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from refinement. So 
na 

hi~(T, ~ ,  ) = - ~ h ~ (  S, 7-l~). 

Proof." By the construction of ~(Tr~), 2r) we can find an integer d such that 

Sdn'T -drn" acts as the identity on 7"/at. Thus 

hi,(Sd"',Tl, ,)  = hi~(Tdr"',7"l.r) =~ dhi,(S"'7-l.r ) = dhi~(T",Tl .r) .  | 

LEMMA 8.3 :  
log p 

hi,(T,7-l. ) = 1--~gqh~(S,~,), 

so together with the last /emma we have hi,(T,7"l, ) = 0 = hi,(S,~a ). 

Proof." 7"l. is T and S invariant by construction, so we can use Remark 2.8. p 

and q are generators of a nonlacunary group so 

logp # n ,  II 
log q m---~" 

LEMMA 8.4: I f ~  a.e. ~) 6 }" is not symmetric, then 

T(P) C VT-l .  V V T - i ( P )  and h[~ PI 7-(, V T - i (P )  = O. 
a=0 i----0 

Proof." Suppose not. This means we can find points 01 and ~ with ~(01) = 

~(~2), ~a(~x, r) = ~f,(~2, r) Vr, a = 0 , . . . ,  h, but ~1(-1, 0) # ~2(-1, 0). If also 

~1(-1, k01) # ~ ( - 1 ,  k01) then ~1 is a 60-symmetric point and we have a contra- 

diction. So assume ~h ( -  1, k01 ) = ~)2 ( -  1, k0a ). 

Now define u~(b,c) = f/,(b,c) for b _> - 1 , c  >_ 0. Extend so that D0(fi,) = 

D0(fi2). Let 6a(fii,r) = 6,(~)i,r). By assumption f i , ( -1 ,0)  # fi1(-1,0). If also 

fi1(-1 - k11ml, knn l )  # fi2(-1 - k n m l ,  kiln1) then fil is a 61-symmetric point 

and we have a contradiction. Thus they must be the same at ( -1  -k l l rn l ,  knnl ) .  

Continue with this process until finally we will have built two points with the 

same 7)h-1, same distributions which differ at ( -1 ,0) .  But that makes them 

6h-symmetric points. Thus they must be equal at ( -1 ,0)  and so ~1(-1,0) = 

t 
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L~.M~A 8.5: hi`(T, P )  = h~ T, 7"l= . 

Proof: 

hi ` (T ,P)=h i, T, ~ .  +hi` T, PI ~= • 

But 

hi` T , P  7-(= = h  i , P 7-[=V T - i ( P  = 0  

by the last lemma. II 

L~.MMA 8.6: For ~ E J(,4o, but ~ ~ rh, hi`(T, P) = hi,(S, P) = O, and thus by 

Remark 2.7, hi`(Y) = hi`( S) = O. 

Proof'. 

Thus 

By Lemmas 8.1 and 8.3 

hì  S,V . 
a=O ==O 

by the last lemma, which equals hi`(S, P)  | 

This completes the proof of Theorem A. In review, we have shown that multi- 

plication by p and q on the circle gives rise to distributions on which combinations 

of these functions act periodically. The exact combination needed is given by the 

ratio of terms common to both integers. We then use these distributions to define 

symmetric points and show that the set of such points has measure 1 or 0. This 

is the dichotomy between Lebesgue measure and measures of entropy zero. 
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